
Offline Software Mark Messier
MIPP @ FNAL
10 August 2002

- Conventions
 - MC Interface
 -Build System/Release management
 -Simple event display
 -To Do ...

Getting Organized...
After last meeting there's been lots of work getting offline effort organized:
 - Offline web page setup off MIPP web page
 - Regular phone conferences (~every 2 weeks, Fridays at 1 Central)

Agreed to a set of conventions for the offline software:
 - C++ based with allowances for FORTRAN wrappers and legacy code
 where re-coding would be too costly

 - ROOT for data format and for other framework services

 - SoftwareReleaseTools (SRT) for release management and build system

 - PostgreSQL for database

 - Adopted set of C++ coding conventions (stolen from MINOS)

 - Actually wrote some code (!)...

Offline Package Overview
Currently there are several packages in the repository:

Monte Carlo packages (FORTRAN, Raja)

Monte Carlo interface packages (C/C++, Messier):
 Geant3Interface - C wrappers for G3 subroutines and commons
 E907MCInterface - produces root file from Monte Carlo
 MCClasses - C++ objects for MC hits and particle stack

EventDataModel (C++, Messier)
 Mechanism for putting and retrieving data into event store

EventDisplay (C++, Messier, Johnson)
 RIght now just a very simple display for MC classes

mipp_io (C, Lebedev)
 Input/Ouput package for online data

Software Release Tools
- Provides build system. Simplifies makefiles. Eg.
 LIB = lib${PACKAGE}
 LIBCXXFILES = *.cxx
 include SoftRelTools/arch_spec.mk

- Allows developers to work with individual packages:

 Base Release
development R1.0.2 R.1.0.1
PkgA PkgB PkgC

Test Release
 PkgC

developer of package C,
relies on Base release for A and B

Single set of base releases at site.
Used by all developers at site

- Provides framework for making tagged releases

- David Lange has scripts to bootstrap new release of software

- Instructions for SRT and manual on MIPP offline page

Work on Raw Data File

MIPP Collaboration Meeting
August, 2002, FNAL
Andre Lebedev
Harvard University
(presented by Mark Messier)

DataRooter

r2dm

MIPP Data Path

PPC’s Online
machine

mipp_io Disk
(raw format)

Offline
machine

m
ipp_io

server

Disk
(root format)

Online
monitoring

Tape

archiver arc
hiv

er

mipp_io Package

Defines the layout of the Raw Data File
Provides for fast writing to disk
– Writes at speeds of over 100 MB/s
– Data is physically written in blocks of 131 kB

Provides a way of serving a data file to
DataRooter (a test server application exists)

MIPP Raw File Data format

File Header

Run Number
Sub Run Number

Creation Date
Number of Events

Size of File
Run Comment

End of Run Comment
Trigger Information

Event

Other
events

Last Event

Event Header

•Event
number = -1

•Data block
sizes all
equal to zero

Cherenkov Data Block

RICH Data Block

Event Header
Event number, block sizes, software time stamp

TPC Data Blocks x 4

Chambers Data Blocks x 6

TOF Data Block

Stucture of Data Blocks

Blocks contain info about
themselves which is used
to decode data from a
block, and helps to make
sure that data is not
corrupted
Data is packed in bytes,
rather than in bits
People need to tell Andre
what kind of information
will be stored for various
detectors!

Block ID

Size of block in bytes

Number of hits in block

Data
Lists of channel numbers,

ADC, TDC info

How mipp_io works

A binary file is created, and file header is
written
When user wants to write an event to disk,
the data gets stored in memory until the
buffer is big enough or until user flushes it
Before the file is closed, file header is
modified to add end of run comment, number
of events, and size of file

Why write data in big chunks?

It is fastest to write
chunks of 4096 bytes
(page size on most OS)
We expect events to be
~100 kB, and will write
data to disk in integer
number of pages

Possible Excerpt from DAQ Code

/* Declare structs */
struct mipp_file Mf;
struct mipp_event Mevent;
/* Initialize file for writing */
init_mipp_file(&Mf, file_name, run_number, sub_run,

trigger_info, MIPP_FWRITE);
/* Add a run comment up to 256 characters */
strcpy(&Mf.comment, “This is run comment”);
open_mipp_file(&Mf);
write_file_header(&Mf);
while(/* running condition */) {

/* Fill mipp_event struct appropriately */
write_mipp_event(&Mf, &Mevent);

}
/* Add end of run comment up to 256 characters */
strcpy(&Mf.end_of_run_comment, “This is end of run comment”);
/* Close file */
close_mipp_file(&Mf);

DataRooter

Eventually, will read data through socket into
memory and write it out to disk in root format.
Inteface between C (online code) and C++
(offline code)
A test Client application exists which
connects to the server and gets data stored
in DRClient class
This is still work in progress

-150 -100 -50 0 50 100 150
-150

-100

-50

0

50

100

150

Y vs X

-500 0 500 1000 1500
-150

-100

-50

0

50

100

150

Y vs Z

-500 0 500 1000 1500
-150

-100

-50

0

50

100

150

X vs Z

EventDataModel
- EventData has three parts which can be read independently:
 Header - run/event number, date, etc.
 Data - Monte Carlo and Detector data objects
 Summary - DST-style summary bank
- Can divide Data further if performance improvements are large but
 for now keep things simple
- Inside "Data" objects are stored in unix-like directory structure:
 /mc/hits/(hit objects)
 /mc/kine/(particle stack)
 /raw/(raw data objects)
 ...
- Users can use event store for temporary objects, eg.
 /tmp/tpc/clusters
 /tmp/hists
- Eventually will have output module to filter directories on output.
 For example, objects in /tmp would (optionally) not get written out.
- Still need I/O interface to simplify file interface

E910 TPC Reconstruction Code

- Provided code by Brian C.
- E910 used database tables for all data, including data we use
 event store for
- MIPP vector-based event store makes transition relatively straight
 forward
- Translate basic objects to ROOT objects, translate tables to vectors.
- Basic syntax ends up staying the same
- Sorted existing code in order of dependency and started translating
 lowest level objects.
- About 1/6th of the way there...

Database
Offline will use database to store:
 - Geometry
 - Calibration constants
 - Algorithm configurations
 - Connection map
 - Channel masks
 - Run/Beam configuration

Need to provide mechanism to change algorithm
 parameters interactively
Need way to get Geometry back into MC
Would be nice to have certain tables available as root files
 for rapid compile/debug cycles

David L. is working on this

Packages looking (maybe found) lead developers

EventDisplay (Steve J.)

Geometry (Jane B-H.)

Online monitoring (??)

 needed for engineering run.
 MINOS has had good experience using
 a CDF framework for this. Interested?
 Talk to me...

Need to get raw data format and MC digits in place

